Analysis of Electrical Load Forecasting by Using Matlab Tool Box through Artificial Neural Network

نویسندگان

  • Neeraj Pandey
  • Sanjay Kulshrestha
  • Manoj Kumar Saxena
چکیده

Load forecasting is a central integral process in the planning and operation of electric utilities. Load forecasting has become in recent years one of the major areas of research in electrical engineering. The main problem for the planning is the determination of load demand in the future. Because electrical energy cannot be stored appropriately, correct load forecasting is very essential for the correct investments. Effective forecasting, however, is difficult in view of the complicated effects on load by a variety of factors such as temperature, humidity. In this paper a threelayered feed forward neural network are trained by the Levenberg-Marquardt algorithm and a radial basis function using matlab programming and matlab tool-box. The Proposed neural network based model is used for forecasting next-week electricity prices. We evaluate the accuracy of the price forecasting attained with the proposed neural network approach, reporting the results from the electricity markets of India.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Term Load Forecasting by Using ESN Neural Network Hamedan Province Case Study

Abstract Forecasting electrical energy demand and consumption is one of the important decision-making tools in distributing companies for making contracts scheduling and purchasing electrical energy. This paper studies load consumption modeling in Hamedan city province distribution network by applying ESN neural network. Weather forecasting data such as minimum day temperature, average day temp...

متن کامل

Efficient Short-Term Electricity Load Forecasting Using Recurrent Neural Networks

Short term load forecasting (STLF) plays an important role in the economic and reliable operation ofpower systems. Electric load demand has a complex profile with many multivariable and nonlineardependencies. In this study, recurrent neural network (RNN) architecture is presented for STLF. Theproposed model is capable of forecasting next 24-hour load profile. The main feature in this networkis ...

متن کامل

Forecasting of heavy metals concentration in groundwater resources of Asadabad plain using artificial neural network approach

Nowadays 90% of the required water of Iran is secured with groundwater resources and forecasting of pollutants content in these resources is vital. Therefore, this research aimed to develop and employ the feedforward artificial neural network (ANN) to forecast the arsenic (As), lead (Pb), and zinc (Zn) concentration in groundwater resources of Asadabad plain. In this research, the ANN models we...

متن کامل

Electrical Load Manageability Factor analyses by Artificial Neural Network Training

On typical medium voltage feeder, Load side management means power energy consumption controlling at connected loads. Each load has various amount of reaction to essential parameters variation that collection of these reactions is mentioned feeder behavior to each parameter variation. Temperature, humidity, and energy pricing variation or major event happening and power utility announcing to th...

متن کامل

Load Forecasting Using Multi-Layer Perceptron Neural Network

Load forecasting has become one of the major areas of research in electrical engineering and is an important problem in operation and planning of electric power generation. Load forecasting is the technique for prediction of electrical load. STLF (Short term load forecast) is essential for Power system planning. In a deregulated market it is much need for a generating company to know about the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016